University stuff.
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Oblig4.java 2.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. abstract class Oblig4 {
  2. // Required for TegnUt
  3. int x[];
  4. int y[];
  5. int n;
  6. int MAX_X;
  7. int MAX_Y;
  8. IntList coHull;
  9. NPunkter17 points;
  10. String name = "Oblig4";
  11. Oblig4(NPunkter17 points) {
  12. this.points = points;
  13. n = points.n;
  14. x = new int[n];
  15. y = new int[n];
  16. coHull = new IntList();
  17. points.fyllArrayer(x, y);
  18. }
  19. // This method should be overwritten by each implementation.
  20. // It's responsible for filling in MAX_X, MAX_Y, and coHull
  21. abstract void solve();
  22. /*
  23. * The rest is utility methods which any implementation will use.
  24. */
  25. // Draw points using TegnUt.
  26. // Requires x, y, n, MAX_X, MAX_Y, and coHull
  27. // to be filled out.
  28. void draw() {
  29. TegnUt t = new TegnUt(this, coHull, name);
  30. t.setVisible(true);
  31. }
  32. // a, b, and c will be used in the line equation.
  33. // It doesn't make sense to recalculate them all the time,
  34. // as they only depend on p1 and p2.
  35. int lineA(int p1, int p2) {
  36. return y[p1] - y[p2];
  37. }
  38. int lineB(int p1, int p2) {
  39. return x[p2] - x[p1];
  40. }
  41. int lineC(int p1, int p2) {
  42. return (y[p2] * x[p1]) - (y[p1] * x[p2]);
  43. }
  44. // From p1 to p2.
  45. // == 0: p3 is on the line.
  46. // > 0: p3 is left of the line.
  47. // < 0: p3 is right of the line.
  48. double lineEquation(int a, int b, int c, int p3) {
  49. return (a * x[p3]) + (b * y[p3]) + c;
  50. }
  51. // Distance between two points
  52. double pointDist(int p1, int p2) {
  53. int x1 = x[p1], y1 = y[p1];
  54. int x2 = x[p2], y2 = y[p2];
  55. int dx = x2 - x1;
  56. int dy = y2 - y1;
  57. return Math.abs(Math.sqrt((dx * dx) + (dy * dy)));
  58. }
  59. // Distance between the line and p3
  60. double dist(double l, int a, int b) {
  61. return l / Math.sqrt((a * a) + (b * b));
  62. }
  63. // Create a list of points, in sorted order, on the line
  64. // given by (a, b, c, p1)
  65. IntList addPointsOnLine(IntList indexes, int a, int b, int c, int p1) {
  66. IntList l = new IntList();
  67. // Add points on the line between p1 and p2
  68. for (int i = 0; i < indexes.size(); ++i) {
  69. int idx = indexes.get(i);
  70. double line = lineEquation(a, b, c, idx);
  71. if (line == 0)
  72. l.add(idx);
  73. }
  74. // Calculate distances for sorting
  75. double[] dists = new double[l.size()];
  76. for (int i = 0; i < l.size(); ++i) {
  77. dists[i] = pointDist(p1, l.get(i));
  78. }
  79. // Sort points based on distance from p1
  80. // (Bubble sort, but it's usually really few elements)
  81. boolean sorted;
  82. do {
  83. sorted = true;
  84. // Loop through points, swap non-sorted ones
  85. for (int i = 1; i < l.size(); ++i) {
  86. double dist = dists[i];
  87. double prevDist = dists[i - 1];
  88. // Skip if already sorted
  89. if (prevDist <= dist)
  90. continue;
  91. sorted = false;
  92. // Swap indexes
  93. int tmpi = l.data[i];
  94. l.data[i] = l.data[i - 1];
  95. l.data[i - 1] = tmpi;
  96. // Swap distances
  97. double tmpd = dists[i];
  98. dists[i] = dists[i - 1];
  99. dists[i - 1] = tmpd;
  100. }
  101. } while (!sorted);
  102. return l;
  103. }
  104. }